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Abstract: The protective role of endogenous estrogen against Urinary Tract Infection (UTI) is well recognized, but the 
involvement of estrogen receptors (ERs) in modulating immunity in the urinary tract during UTI pathogenesis has 
not been investigated. The current study investigates the role of ERα in modulating immune responses and UTI out-
come. Mice were pre-treated with either ERα agonist, propyl-pyrazole-triol (PPT), or ERα antagonist, methyl-piperidi-
no-pyrazole (MPP), before experimental UTI. The UTI outcome was determined by checking the bacterial load, CD55 
and TNFα expression in the bladder and kidney tissues. We observed opposite effects of PPT and MPP treatment on 
bacterial clearance in bladder versus kidney. PPT significantly reduced bacterial load (P < 0.05) only in the kidney, 
with minimal changes in CD55 and TNFα levels. In contrast, MPP showed remarkable bacterial clearance only in the 
bladder that corresponded with reduced CD55 and TNFα expression. MPP treatment in uninfected state induced a 
significant increase in TNFα production (P < 0.05) in the bladder, but not in the kidney. Our results suggest a protec-
tive role of ERα in the kidney. However, protection in the bladder may be mediated via other ER subtypes that may be 
involved in boosting the local immune responses. Drugs targeting specific ERs in bladder may serve as an adjunct 
treatment for boosting immune responses in the urogenital tract for efficient bacterial clearance.

Keywords: Estrogen receptor, urinary tract infection, bladder, kidney, urinary tract immunity, ERα agonist, ERα 
antagonist, CD55, TNFα

Introduction

Urinary Tract Infections (UTIs) are one of the 
most common bacterial infections, resulting in 
around one million hospital admissions in the 
United States annually [1]. Despite antibiotics 
being the most common regimen for UTI, they 
are becoming increasingly ineffective due to 
emergence of antibiotic-resistant microorgan-
isms [2]. Women are more susceptible to UTI as 
50-60% women experience at least one UTI 
episode in their lifetime and about 25% of 
these women have chances of acquiring recur-
rent UTI after the first infection. Post-
menopausal women, who have sub-physiologi-
cal levels of circulating estrogen, are more 
prone to acquiring recurrent UTI [3] which can 
often lead to acute pyelonephritis and kidney 
failure [3, 4]. Numerous other clinical reports 

and experimental studies on UTI have also indi-
cated that estrogen is an important host factor 
in UTI pathogenesis [4-8]. Although, the FDA 
has approved the use of vaginal estrogen sup-
positories for post-menopausal UTI patients, 
the underlying mechanisms of action of these 
vaginal estrogen suppositories are not well 
understood [9].

About 80% of UTIs are caused by uropathogenic 
Escherichia coli (UPEC) like Dr fimbriae bearing 
E. coli (Dr E. coli), which cause both cystitis and 
pyelonephritis [1, 10]. By binding to its host 
receptor, CD55, which is also a complement 
regulatory protein [11], Dr E. coli internalize in- 
to bladder and kidney cells, forming intracellu-
lar bacterial reservoirs and leading to recur- 
rent UTI [12, 13]. Studies have shown that 
estrogen impacts Dr E. coli binding in the 
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human endometrium [14] and regulates the 
expression of CD55 in various human [14, 15] 
and mouse tissues [16]. Other reports have 
also demonstrated that estrogen treatment 
reduces UTI outcome in ovariectomized mice 
[6, 17] as well as in post-menopausal women 
confirming the protective role of estrogen [6]. 
However, the involvement of estrogen recep-
tors (ERs) in generating immune responses in 
the urogenital tract against UTI has not been 
studied. 

ER subtypes (ERα, ERβ and GRP30) are differ-
entially expressed in various human and mouse 
tissues [18-24]. For example, several studies 
have reported a higher expression of ERα than 
ERβ in the kidney. The differential distribution 
of ERs in various tissues result in variable 
action of estrogen observed in these tissues 
[25]. ERs are known to induce or repress the 
transcription of numerous genes including early 
and late cytokine genes, thus playing a major 
role in regulating innate immune responses 
against infections [26-31]. While the immuno-
modulatory action of ERs have been studied in 
various viral [32] and bacterial infections [33, 
34], their contribution in eliciting immune 
responses in the female urinary tract during UTI 
has not been investigated. 

Innate immune responses in the urinary tract 
are robust and play a major role in UTI patho-
genesis [2, 35]. As the first line of defense, 
mucosal epithelial cells are known to eliminate 
bacterial colonies by releasing pro-inflammato-
ry cytokines like TNFα [36-38]. Studies have 
shown that TNFα levels in the urine samples of 
UTI patients were found to be considerably 
higher and reduced after therapy as compared 
to healthy individuals [39]. TNFα expression in 
various tissues has been found to be differen-
tially regulated by different ER subtypes [40-
44] under the influence of estrogen [45, 46]. 
Therefore, it is important to identify the specific 
ERs that are involved in TNFα production in the 
urinary tract in response to ascending UTI. 

Results from our previous in vitro studies in 
mouse Inner Medullary Collecting Duct (mIMC- 
D3) cells showed that activating ERα with the 
specific agonist, propyl-pyrazole-triol (PPT) [47], 
resulted in 50-60% reduction in bacterial inva-
sion by Dr E. coli, while blocking ERα with the 
specific antagonist, methyl-piperidino-pyrazole 
(MPP) [48], reversed this protection by modu-

lating CD55 expression (unpublished data). 
Based on our previous published study showing 
hormonal regulation of Dr E. coli colonization 
[14] and our results in mIMCD3 cells, we 
hypothesized that ERα is involved in dictating 
UTI pathogenesis by modulating CD55 and 
TNFα expression in the urinary tract. In the cur-
rent study, we treated UTI susceptible C3H/HeJ 
ovariectomized (OVX) mice with PPT, and ovary-
intact mice with MPP, before inducing experi-
mental UTI. UTI outcome was determined by 
checking the bacterial load, CD55 and TNFα 
expression in both bladder and kidney. We 
observed opposite effects of PPT and MPP 
treatment on bacterial clearance and differen-
tial expression of CD55 and TNFα in bladder 
versus kidney. In conclusion, our results indi-
cate that ERα is responsible for the bacterial 
clearance in the kidney, however, in the blad-
der, estrogen receptor other than ERα seems to 
be involved.

Material and methods

Mice

C3H/HeJ ovary-intact and OVX mice were pur-
chased from Jackson Laboratories (Bar Harbor, 
ME). C3H/HeJ mice have served as an estab-
lished model for UTI pathogenesis [49]. Mice 
were housed in microisolator cages in United 
States Department of Agriculture (USDA)-ap- 
proved facility at the Oklahoma State University 
Center for Health Sciences. The mice had free 
access to filtered water and a soy-free diet. All 
animal experiments and procedures were 
approved by the Oklahoma State University 
Center for Health Sciences Institutional Animal 
Care and Use Committee (IACUC).

Drug treatments and experimental UTI induc-
tion

PPT and MPP drug (Cayman Chemicals, Ann 
Arbor, MI) injections were prepared in 1:1 mix-
ture of DMSO and corn oil. Ovary-intact mice (n 
= 5 per group) were injected with MPP (4 mg/kg 
body weight) and OVX mice (n = 6 per group) 
were injected with PPT (10 mg/kg body weight) 
[50] subcutaneously for 7 consecutive days. 
Control group mice were injected with vehicle. 
After drug treatment, experimental UTI was 
induced in mice transurethrally under anesthe-
sia. Each mouse received 50 μl of 7 × 108 cfu/
mL of Dr E. coli suspension made in phosphate 
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buffered saline (PBS), as previously described 
[49]. Mice were sacrificed at 2 days or 6 days 
post-infection (pi). Kidney and bladder tissues 
were harvested and snap frozen for further 
analyses. 

Determination of bacterial load in urogenital 
tissues 

Kidney and bladder tissues were weighed and 
homogenized in 0.1% Triton X-100. The tissue 
homogenates were plated on Luria Bertani (LB) 
agar plates and incubated overnight at 37°C. 
Individual bacterial colonies were counted and 
results were expressed as colony forming units 
(cfu) per gram of tissue.

Quantitative real time RT-PCR analyses 

Total RNA was isolated from kidney tissues wi- 
th TRIzol reagent (Life Technologies, Grand 
Island, NY). cDNA was synthesized from isolat-
ed RNA using QuantiNova Reverse Transcrip- 
tion kit (Qiagen, Hilden, Germany) according to 
manufacturer’s instructions. Quantitative PCR 
was performed using PowerUp™ SYBR® Gre- 
en Master Mix (Applied Biosystems, Foster Ci- 
ty, CA). The expression levels of target genes, 
Cd55 and Tnfa were normalized to the endo- 
genous control gene, hypoxanthine-guanine 
phosphoribosyltransferase (Hprt) and reported 
as 2-ΔCt values. Primer pairs purchased from 
Integrated DNA Technologies (Coralville, IA) 
were as follows: Cd55 (Forward primer-5’GA- 
AAGACTGAGTTTTGCATCCCTCAAAAAAGAG3’, 
Reverse primer-5’CAAAACT GAGCAACTGGAGA- 
CCATACTAAATCC3’), Tnfa (Forward primer-5’GC- 
CTGTAGCC CACGTCGTAG3’, Reverse primer-
5’GTCTTTGAGATCCATGCCGTTGGC3’) and Hprt 
(Forward primer-5’GCTGACCTGCTGGATTACAT- 
TAAAGCACT3’, Reverse primer-5’CCCCCGTTGA
CTGATCATTACAGTAGC3’). Quantitative RT-PCR 
was carried out using ABI StepOne Real-Time 
PCR system (Applied Biosystems, Foster City, 
CA). 

Immunohistochemistry

Formalin fixed paraffin embedded (FFPE) blad-
der and kidney tissues of mice were sectioned 
(5 mm thick) for immunohistochemical analy-
ses. The paraffin sections were deparaffinized 
in xylene and rehydrated in graded ethanol. 
Heat induced epitope retrieval was performed 
in 10 mM citrate buffer (pH 6.0) followed by 

endogenous peroxidase deactivation with Dual 
Endogenous Enzyme-Blocking Reagent (Dako, 
Carpinteria, USA). Tissue sections were incu-
bated in 5% horse serum followed by overnight 
incubation at 4°C with primary antibodies that 
include rabbit polyclonal anti-mouse CD55 anti-
body (H-319, Catalog # sc-9156 from Santa 
Cruz Biotechnology, Santa Cruz, CA) or with 
goat polyclonal anti-mouse TNFα antibody 
(Catalog # AF-410-NA from R&D systems, 
Minneapolis, MN). HRP-conjugated secondary 
antibodies used include anti-rabbit Ig (Catalog 
# MP-7401, Vector Laboratories, Burlingame, 
CA) or HRP-conjugated anti-goat Ig (Catalog # 
MP-7405, Vector Laboratories, Burlingame, 
CA). ImmPACT DAB Peroxidase (HRP) Substrate 
kit (Catalog # SK-4105, Vector Laboratories) 
was used for antigen detection and nuclei were 
counter stained using hematoxylin (Vector 
Laboratories, Burlingame, CA). Stained sec-
tions were visualized using an Olympus BX43 
microscope and images were taken with an 
Olympus DP25 camera. Staining intensity at 40 
× magnification was quantified using ImageJ 
IHC profiler software [51].

Statistical analysis

GraphPad Prism version 6 (Graph Pad software 
Inc, San Deigo, CA) was used for statistical 
analyses. Group differences for more than two 
experimental groups were compared using 
Kruskal-Wallis test (non-parametric ANOVA) 
with Dunn’s post-hoc tests for multiple compar-
isons. Non-parametric Mann Whitney U-tests 
were performed for determining differences 
among two experimental groups, wherever 
appropriate. Differences at P < 0.05 were con-
sidered significant.

Results

Modulation of ERα by PPT and MPP differen-
tially regulate UTI disease outcome in bladder 
versus kidney

We determined the UTI disease outcome in PPT 
or MPP treated mice by checking the bacterial 
load in bladder and kidney tissue homogen- 
ates. 

PPT drug treatment (Figure 1A) in mice sligh- 
tly increased the bacterial colonization in blad-
der at both 2 days and 6 days pi compared to 
vehicle treated groups, but not significantly. 
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However, in the kidney, PPT treatment resulted 
in significant (P < 0.05) bacterial clearance at 2 
days pi compared to the corresponding vehicle 
treated group with some of these mice showing 
low or no bacterial counts. The bacterial load in 
kidney at 6 days pi was found to be the lowest 
among the groups. Thus, PPT induced enhanced 
reduction in bacterial load suggesting its pro-
tective role in mediating bacterial clearance in 
the kidney.

MPP treatment (Figure 1B) reduced bacterial 
load in the bladder at 6 days when compared to 
2 days pi and vehicle treated groups and three 
out of the five mice showed complete bacterial 
clearance. In contrast, we observed no signifi-
cant change in bacterial load in kidney after 
MPP treatment at both the time points. Thus, 
MPP induced enhanced bacterial clearance 
suggesting its protective role in the bladder.

Modulation of ERα by PPT and MPP differ-
entially regulate CD55 expression in bladder 
versus kidney 

CD55 serves as the host cell receptor for bac-
terial colonization and its tissue expression is 
modulated upon infection with Dr E. coli [13]. In 
our study, CD55 protein in the bladder was pre-
dominantly expressed in the transitional epi-
thelium, while in the kidney it was mainly 
expressed in the medullary and cortical tubules. 
(Representative images shown in Figure 2B 
and 2D). 

PPT treatment did not result in any change in 
CD55 expression in either bladder or in kidney 

(Figure 2A). However, the overall CD55 expr- 
ession levels in bladder in both PPT and vehi- 
cle treated groups at both time points were 
more as compared to CD55 expression in the 
kidney.

MPP treatment considerably reduced CD55 
expression in bladder at both time points com-
pared to controls. In contrast, CD55 expression 
in kidney tissues was reduced only in MPP 
treated group at 2 days pi as compared to vehi-
cle treated group. However no change in CD55 
expression was observed in MPP or vehicle 
treated groups at 6 days pi. 

Cd55 mRNA levels were determined only in kid-
ney tissues of infected mice as bladder tissues 
were used up for bacterial culture and protein 
expression studies. No significant differences 
were observed in Cd55 mRNA levels in both 
groups of drug treated mice as compared to 
controls (Figure 3A and 3B).

Our results highlight the differential regulation 
of CD55 expression by PPT and MPP in the 
bladder and kidney during UTI, impacting the 
infection outcome.

Modulation of ERα by PPT and MPP differ-
entially regulate TNFα expression in bladder 
versus kidney 

TNFα protein expression was predominantly 
observed in transitional epithelium of the blad-
der and in medullary and cortical tubules of the 
kidney (Representative images shown in Figure 
4B, 4D and 4F). 

Figure 1. Bacterial load at 2 day versus 6 day post-infection (pi) in bladder and kidney (A) PPT and (B) MPP treated 
mice (N = 10 to 12 mice per treatment group, each with two time points). Bacterial cfu/gram of tissue were deter-
mined in tissue homogenates. PPT significantly reduced (*P < 0.05) bacterial load in kidney but not in the bladder. 
MPP treatment led to efficient clearance of bacterial infection in the bladder, but not in the kidney. 
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Figure 2. CD55 expression at 2 day versus 6 day pi in bladder and kidney after (A) PPT and (C) MPP treatment in mice (N = 10 to 12 mice per treatment group, each 
with two time points). Representative images (40X) of bladder and kidney tissue sections showing CD55 protein expression after (B) PPT and (D) MPP treatment 
(E: Epithelium, LP: Lamina, Propria, M: Muscularis, T: Tubules, G: Glomerulus, GH: Glomerular Head, B: Bowman’s Capsule). (A) After PPT treatment, no change in 
CD55 expression was observed in kidney, while CD55 expression in bladder was considerably high (C) After MPP treatment, CD55 levels were considerably low in 
bladder but comparatively higher in kidney. 
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PPT treatment significantly (P < 0.01) increased 
TNFα protein expression in bladder at 2 days pi, 
however there was no change in TNFα expres-
sion in kidney at both time points after PPT 
treatment (Figure 4A). 

Effects of MPP pre-treatment on TNFα protein 
expression in bladder and kidney in uninfected 
mice were determined. MPP treatment in unin-
fected mice led to significant increase in TNFα 
expression in the bladder (P < 0.05). In infected 
group, MPP treatment significantly reduced 
TNFα expression in bladder at 6 days pi com-
pared to vehicle treated group (Figure 4C and 
4D). The reduced TNFα expression in infected 
MPP group corresponded with the bacterial 
clearance observed in the bladder. 

In contrast, MPP treatment in uninfected mice 
minimally increased TNFα expression in the 
kidney. In infected group, MPP treatment did 
not induce any changes in TNFα expression in 
the kidney at both time points compared to 

control group, which corresponded with the 
persistence of infection.

Tnfa mRNA levels were determined only in kid-
ney tissues of infected mice. In PPT treated 
group, Tnfa mRNA levels were comparable to 
vehicle treated groups at both time points 
(Figure 5A). However, in MPP treated group, 
Tnfa mRNA levels were significantly low (P < 
0.05) at 2 days pi (Figure 5B). 

Our results highlight the differential regulation 
of TNFα expression by PPT and MPP in the blad-
der and kidney during UTI, impacting the infec-
tion outcome.

Discussion

Estrogen mediates its various physiological 
actions through its receptors, ERα, ERβ or 
GPR30, which are differentially distributed in 
various human and mouse tissues [31, 52-56]. 
The involvement of estrogen and ER subtypes 
in modulating immune responses has been 
widely described [27, 28, 30, 57]. The protec-
tive action of estrogen in the urogenital tract 
has been reported [4-8, 17], however, the con-
tributions of ER subtypes in mediating these 
protective responses have not been sufficiently 
studied. The aim of this current study was to 
investigate the involvement of ERα in mediating 
protection against UTI via modulating the 
expression of innate immune markers, CD55 
and TNFα. We studied the effects of ERα ago-
nist, PPT, and ERα antagonist, MPP, treatment 
in UTI susceptible C3H/HeJ mice.

PPT treatment in OVX mice reduced bacterial 
load in kidney at both 2 and 6 days pi, suggest-
ing that bacterial clearance in the kidney is 
mediated via ERα. In contrast, PPT treatment 
did not reduce the bacterial load in the bladder, 
suggesting that ERα may not be involved in 
bacterial clearance in the bladder. The effects 
of PPT treatment on CD55 and TNFα expres-
sion in the kidney were found to be minimal 
compared to vehicle treated groups at the 
selected time points. However, in the bladder, 
PPT treatment led to elevated levels of CD55 
expression at 6 day pi, corresponding to  
the increased bacterial load observed at this 
time point. Increased cellular CD55 expression 
in response to persistent infection with Dr E. 
coli has been previously reported [13]. Also, a 
significant increase in TNFα expression was 

Figure 3. Expression of cd55 mRNA in kidney after 
(A) PPT treatment and (B) MPP treatment (N = 10 
to 12 mice per treatment group, each with two time 
points). (A) No changes in CD55 mRNA copy num-
bers were observed after PPT treatment. (B) Howev-
er, MPP treatment reduced CD55 mRNA copy num-
bers at 6 days pi. 
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Figure 4. TNFα expression at 2 day versus 6 day pi in bladder and kidney of (A) PPT and (C and E) MPP treated mice (N = 10 to 12 mice per treatment group, each 
with two time points). Representative images (40 ×) of bladder and kidney tissue sections showing TNFα expression after (B) PPT and (D and F) MPP treatment (E: 
epithelium, LP: Lamina Propria, M: Muscularis, T: Tubules, G: Glomerulus, GH: Glomerular Head, B: Bowman’s capsule). (A) After PPT treatment, TNFα levels were 
significantly increased in bladder (**P < 0.01) at 2 days pi but no changes in TNFα levels were observed in the kidney at both time points. (C) In the uninfected state, 
TNFα levels in bladder were significantly higher (*P < 0.05) after MPP treatment and in infected state TNFα levels significantly reduced (**P < 0.01) as compared 
to vehicle treated groups. (E) In the kidney, minimal changes in TNFα levels were observed in both uninfected and infected state after MPP treatment.
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observed in the bladder of PPT treated group 
due to persistent infection.

MPP treatment resulted in compromised bacte-
rial clearance in the kidney supporting our 
hypothesis related to involvement of ERα in the 
kidney. In contrast, MPP treatment led to 
decreased bacterial load in the bladder, contra-
dicting our hypothesis and suggesting involve-
ment of receptors other than ERα. 

Due to persistence of bacterial infection in the 
kidney of vehicle and MPP treated groups, com-
parable CD55 and TNFα expression were 
observed among these groups. In contrast, 
MPP reduced CD55 and TNFα expression lev-
els in the bladder that corresponded with the 
observed efficient bacterial clearance in these 
mice. 

We checked the effects of MPP on CD55 and 
TNFα production in uninfected homeostasis 
state. Effects of PPT treatment in uninfected 
mice were not studied as CD55 and TNFα were 

minimally affected in the kidney during bacteri-
al clearance. Our observations in MPP treated 
uninfected mice showed a significant upregula-
tion of TNFα expression suggesting that under 
homeostasis, MPP treatment primes TNFα pro-
duction in the bladder, thus boosting the pro-
inflammatory responses facilitating bacterial 
clearance. These results are further supported 
by various reports highlighting the important 
role of TNFα for mediating immunity in the uri-
nary tract [39, 58-60]. However, the effects of 
MPP treatment on TNFα expression in the kid-
neys of uninfected mice were minimal, explain-
ing the observed compromised bacterial clear-
ance in MPP treated infected group. These 
results further suggest that even during the 
homeostasis state production of TNFα is differ-
entially regulated in bladder versus kidney in 
response to the deactivation of ERα by MPP. In 
light of these findings, boosting TNFα produc-
tion in the bladder by MPP or similarly acting 
drugs in combination with antibiotics may serve 
as a useful strategy for treating recurrent blad-
der infections.

Differential ER subtypes expression in different 
tissues including bladder and kidney, has been 
reported [18-21, 61]. Due to this variable distri-
bution, it is possible that the protective res- 
ponses against UTI are mediated through dif-
ferent ER subtypes in the bladder versus kid-
ney. ERα and its splice variants are predomi-
nantly expressed in kidneys [62-65], support-
ing our results showing protective effects of 
ERα in the kidney. In contrast, our results in  
the bladder suggest involvement of receptors 
other than ERα. These receptors could be pos-
sibly either ERβ (another nuclear ER subtype)  
or GPER/GPR30 (membrane bound ER), that 
are also expressed in the bladder [66-68]. 
Several studies have demonstrated the overex-
pression of ERβ in the bladder tissues of 
humans, rats and mice [22, 69-73]. GPER, is 
also known to cross-talk with the nuclear ER 
subtypes in order to mediate transcription of 
target genes [74-77]. 

To our knowledge, this is the first report indicat-
ing differential involvement of ERα in modulat-
ing immunity in the bladder and kidney in 
response to experimental UTI. Further studies 
are needed to identify the involvement of spe-
cific ERs in modulating the immune responses 
against UTI in the bladder. A comprehensive 

Figure 5. Expression of Tnfa mRNA in kidney after 
(A) PPT treatment and (B) MPP treatment (N = 10 
to 12 mice per treatment group, each with two time 
points). (A) PPT treatment reduced Tnfa mRNA copy 
numbers only at 2 days pi. (B) MPP treatment re-
duced Tnfa mRNA copy numbers at both time points, 
but significantly at 2 days pi (*P < 0.05).
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knowledge of the ER dependent protective sig-
naling mechanisms against UTI may lead us to 
find novel therapeutic approaches for UTI 
treatment.
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